

A Step Nearer to Unlocking the Prevention of Diabetes

¹Chinedu-madu Jane Ugochi and ²Nnodim Johnkennedy ¹Faculty of medical laboratory science, Federal university Otuoke, Bayelsa State ²Department of Medical Laboratory Science, Faculty of Health Sciences, Imo State University, Owerri

*Corresponding Author Email id- kishorgavandi10082001@gmail.com

INTRODUCTION

Type 2 diabetes, which affects more than 500 million people globally and is constantly increasing, has long been a global health concern. The medical establishment has mostly concentrated on managing the illness for decades. However, there has been a change in recent years—a greater focus on prevention. Indeed, it might be one step closer to realizing diabetes prevention's full potential [1]

Diabetes has a greater impact due to its consequences than its prevalence. Poorly controlled diabetes can have terrible effects, including blindness, renal failure, heart disease, amputations, and early mortality. The need for efficient preventative measures has never been greater due to the rising prevalence in all age categories, but especially in younger populations [2].

Since diabetes is becoming much more common worldwide, particularly in low- and middle-income nations, prevention and control are vital public health priorities. rise calls for immediate action, such as addressing disparities in access to care, strengthening health systems for early identification and treatment, and changing policies to encourage healthy behaviors. Over the past three decades, the number of people with diabetes has more than tripled worldwide, with 830 million expected to have the disease in 2022. Compared to high-income countries, prevalence is increasing more quickly in low-and-middle-income (LMIC) nations [3]. It's estimated that 783 million persons will have diabetes by 2045.

Nearly 59% of individuals with diabetes in 2022 (450 million) would still have untreated diabetes, primarily in LMICs, making it a serious issue.

There are significant global differences, with diabetes rates as high as 20% in some areas. The fact that type 2 diabetes is mostly preventable is among the most revolutionary discoveries in diabetes research. Simple lifestyle modifications like regular exercise, good food, and modest weight loss can lower the risk of type 2 diabetes by up to 58%, according to seminal studies like the Diabetes Prevention Program (DPP) [4].

Globally, this revelation changed public health tactics. In an effort to identify people in the pre-diabetic stage, when blood sugar levels are increased but not yet high enough to be diagnosed as diabetes, governments and healthcare organizations are now funding lifestyle intervention programs [5].

A healthy lifestyle, with an emphasis on weight management through diet and exercise, is the cornerstone of preventing diabetes. This include consuming a balanced diet, exercising frequently, and keeping a healthy weight [6].

Prevention efforts are being strengthened by developments in digital health technologies and wearable technology. With the use of real-time data from devices like fitness trackers, smartwatches, and continuous glucose monitors (CGMs), people can now better understand how their bodies react to particular foods and activities. By tracking behaviors, establishing objectives, and offering individualized coaching, mobile apps make prevention more approachable and interesting [7].

Additionally, artificial intelligence (AI) is taking over. Years before conventional diagnostic techniques would identify diabetes, machine learning algorithms can evaluate medical records and identify those who are at high risk of getting the disease [8].

The role of genetics in diabetes risk is being studied more and more. Insulin resistance and beta-cell dysfunction have been associated with specific gene variations. Scientists are attempting to achieve precision prevention—tailoring methods to individuals based on their distinct biology and behavior—by fusing lifestyle data with genetic testing [9].

Imagine a moment in the future when your doctor can use your DNA, microbiome, and current lifestyle data t develop a customized preventative strategy. That future is closer than it first appeared. Health is not something that happens in a vacuum. The ability to make healthy decisions is influenced by a person's socioeconomic situation, education, access to wholesome food, and safe areas for physical activity. Population-level diabetes risk reduction appears to be possible through community-driven prevention initiatives, such as school-based programs, physically active urban planning, and culturally appropriate education [10].

CONCLUSION

It is closer than ever to a time when type 2 diabetes can be largely prevented thanks to scientific advancements, technological advancements, and a renewed focus on public health. However, the journey is not yet complete; continued cooperation between researchers, healthcare professionals, legislators, and communities is needed to fully realize the potential of diabetes prevention. With consistent dedication, that once-unattainable future is now becoming a reality.

REFERENCES

- 1) Leslie, R.D., Evans-Molina, C., Freund-Brown, J., Buzzetti, R., Dabelea, D., Gillespie, K.M., Goland, R., Jones, A.G., Kacher, M., Phillips, L.S. and Rolandsson, O.,(2021). Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care, 44(11), 2449-2456.
- 2) 2.Gregory, G.A., Robinson, T.I., Linklater, S.E., Wang, F., Colagiuri, S., de Beaufort, C., Donaghue, K.C., Harding, J.L., Wander, P.L., Zhang, X. and Li, X., (2022). Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. The Lancet Diabetes & endocrinology, 10(10), 741-760.
- 3) Catherine, J.P., Russell, M.V. and Peter, C.H., (2021). The impact of race and socioeconomic factors on paediatric diabetes. EClinicalMedicine, 42.
- 4) Ogle, G.D., James, S., Dabelea, D., Pihoker, C., Svennson, J., Maniam, J., Klatman, E.L. and Patterson, C.C., (2022). Global estimates of incidence of type 1 diabetes in children

- and adolescents: Results from the International Diabetes Federation Atlas. Diabetes research and clinical practice, 183,.109083.
- 5) Burahmah, J., Zheng, D. and Leslie, R.D., (2022). Adult-onset type 1 diabetes: a changing perspective. European Journal of Internal Medicine, 104, 7-12.
- 6) Whicher, C.A., O'Neill, S. and Holt, R.G.,(2020). Diabetes in the UK: 2019. Diabetic Medicine, 37(2),.242-247.
- 7) Mobasseri, M., Shirmohammadi, M., Amiri, T., Vahed, N., Fard, H.H. and Ghojazadeh, M., (2020). Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health promotion perspectives, 10(2), .98.
- 8) Bellou, V., Belbasis, L., Tzoulaki, I. and Evangelou, E.,(2018). Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PloS one, 13(3),e0194127.
- 9) Einarson TR, Acs A, Ludwig C, Panton UH.(2018) Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 17(1):83.
- 10) Afshinnia F, Wilt TJ, Duval S, Esmaeili A, Ibrahim HN (2010). Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant. 25(4):1173-83.